
Usenet Gems

Brian McCauley
<nobull@mail.com>

University Hospital, Birmingham,
NHS Trust

(not here in any official capacity)

(not giving the talk in the proceedings)

Why Gems?

● Small sparkling objects of high value
● Found by sifting a mass of valueless material

 FAQs
 Failures to RTFM
 Off-topic threads
 Trolls defending the above

● Irate netizens trying to enlighten the trolls

What are these gems?

● Seemingly simple questions
 Often asked by newbies

● Not application area specific
● Reveal something about Perl

 a high “oooooh” factor
 maybe an “argh!!!” factor

substr() as subroutine argument

● Consider
 sub stripws {
 $_[0] =~ s/\s//g;
 return $_[0];
 }

 $_="field1 field2 field3";
 my $x = stripws(substr($_,10,10));

● Would expect $x='field2'
● In fact $x='field2fiel'

substr() as subroutine argument

● The elements of @_ are
 aliases to the arguments
 not copies

sub foo {
 $_[0] = 'Cooked';
}

my $q='Raw';
foo($q);
print "$q\n"; # Prints 'Cooked'

substr() as subroutine argument

● substr() is an lvalue function
● Assign to it directly

 substr($s,2,2)='xxx';
● Or though an alias

 $_='xxx' for substr($s,2,2);
● Alias has “substr magic”
● ref() reports type of such as LVALUE

 print ref \substr($s,2,2);
 print ref \$_ for substr($s,2,2);

substr() as subroutine argument

● In conclusion

my $s='xxxxxxxxxxxxxxxxxxxxxxxxxxxxx';
for my $x (substr($s,10,10)) {
 $s = '0123456789Wierd, eh??';
 print "$x\n"; # Prints 'Wierd, eh?';
 $x= 'Just totally crazy';
 print "$s\n"; # Prints '0123456789Just totally crazy?'

 $s = 'field1 field2 field3';
 $x =~ s/\s//g;
 print "$x\n"; # Prints 'field2fiel'
}

Minimal matching

● Given a string
 $_ = 'qwertayuiopasdfooghjkl';

● Extract the portion ending at 'foo' and
starting at the previous 'a'

Minimal matching

● Obvious answer
 my ($match) = /(a.*?foo)/;

● Does not work
 Non greedy qualifer does not trump first-

match rule

Minimal matching

● Special case because 'a' is a single character
 my ($match) = /(a[^a]*foo)/;
 Does not generalise to 'a' being an
arbitrary pattern

● Special case for last 'foo'
 my ($match) = /.*(a.*foo)/;
 Does not generalise to finding each
'foo'

Minimal matching

● The original poster wanted to find
 each /$end/ in turn
 extract from last preceding /$start/

● Want a way to anchor a regex relative to where
previous search left off.
 The \G assertion

Minimal matching

● Putting it together

$_ = 'axaxfoo ayayfoo';
my $start = qr/a/;
my $end = qr/foo/;
my @matches;

while (/$end/g) {
 push @matches => $1 if /.*($start.*$end\G)/;
}

The API of import

● What is the API of import()
● It's up to the module author!

 There are only conventions
 Some people find this distressing

● For compatability with older Perl may want
import() to simulate the VERSION method
 Treat first argument as a minimum required

version

defined() and autoloaded functions

● Why is defined() is false for Fcntl constants?
 use Fcntl;
 print 0+defined(&O_APPEND),”\n”; # 0
 print O_APPEND,”\n”; # prints 8

● It's because &O_APPEND is autoloaded
 comes into being on first call it
 exists(&O_APPEND) always true
 defined(&O_APPEND) is false until call

● Or is it?

defined() and autoloaded functions

● OK so why is it
 use Fcntl;
 print O_APPEND,”\n”; # 8
 print 0+defined(&O_APPEND),”\n”; # 0

● Well it's a bug
● But what's going on?

defined() and autoloaded functions

● Exporter inserts a CODE reference info a glob
 *O_APPEND = \&Fcntl::O_APPEND;

● But &Fcntl::O_APPEND is not defined!
● What does it mean to make a reference to an

undefined function?
● it's almost like a symref

defined() and autoloaded functions

● How we expect CODErefs to work

sub one { 'one' };
sub foo { 'zero' };

my $bar = \&foo;
print \&foo,$bar; # Prints the same thing twice

*foo = \&one; # Emits redefined warning
print $bar->(); # Prints zero
print \&foo,$bar; # Prints different things

eval "sub foo { 'two' }"; # Emits redefined warning
print $bar->(); # Still prints zero

print 0+defined(&$bar); # Prints 1

defined() and autoloaded functions

● How CODErefs to undefined functions work

sub one { 'one' };

my $bar = \&foo; # &foo does not yet exist
print \&foo,$bar; # Prints the same thing twice

*foo = \&one;
print \&foo,$bar; # Prints different things
print $bar->(); # Prints one

eval "sub foo { 'two' }"; # Emits redefined warning
print $bar->(); # Prints two

print 0+defined(&$bar); # Prints 0

if something = this or that

● A programming newbie writes
 next if $_ eq ('Fred' or 'Wilma');

● Clearly missundersood what “or” means in a
programming language

● The semantics the newbie expects of “or” are
not something a programmer would expect

● But Perl has something with the semantics the
newbie would expect of “or”
 use Quantum::Superpositions;
 next if $_ eq any('Fred','Wilma');

Finding all matches

● Given a string
$_ = 'a78b9c';

● And a pattern
my $p = qr/\d+/;

● Find the start and end of all matches
 For convenience, express as

● Offset of first character of match
● Offset of first character beyond match

Finding all matches

● The simple answer
 Scalar m//g iterator
 The @- and @+ special variables

$_ = 'a78b9c';
my $p = qr/\d+/;
my @matches;

while (/($p)/g) {
 push @matches => [$-[1], $+[1]];
}

Finds '78' and '9' i.e. @matches=([1,3],[4,5])

Finding all matches

● Overlapping matches
 Look for a zero-width target

$_ = 'a78b9c';
my $p = qr/\d+/;
my @matches;

while (/(?=($p))/g) {
 push @matches => [$-[1], $+[1]];
}

Finds '78', '8' and '9' i.e. @matches=([1,3],[2,3],[4,5])

Finding all matches

● Multiple matches at same start
 Usually finds only 'best'

● Fool RE engine into backtracking
 “always false” assertion (?!)

● Save values before backtracking
 Embed code (?{ ... })

Finding all matches

● Putting it together

$_ = 'a78b9c';
my $p = qr/\d+/;
my @matches;

my $save =qr/(?{ push @matches => [$-[1], $+[1]] })/;

/($p)$save(?!)/;

Finds '78','7','8' and '9' i.e. @matches=([1,3],[1,2],[2,3],[4,5])

Thankyou

● Sildes will be available on
 http://birmingham.pm/

